
84K00070
Rev. Basic

11/1/97 1

Checkout and Launch Control System
(CLCS)

System Software Development Plan

Volume 1

Prepared By:

CLCS System Software

DP
Kennedy Space Center, FL 32899

84K00070
Rev. Basic

11/1/97 2

CLCS System Software Development Plan

Original Signed By: Original Signed By:
____________________________ ___________________________
Retha Hart Tom Swanson
CLCS Program Manager NASA Safety & Mission Assurance

Original Signed By: Original Signed By:
____________________________ _____________________________
Larry Wilhelm Kirk Lougheed
CLCS System Software CLCS Systems Engineering

Concurrence:
Original Signed By: Original Signed By:
____________________________ ____________________________
Dennis Fougnie Ben Bryant
CLCS System Subsystem Engineering CLCS Applications Software

Original Signed By: Original Signed By:
____________________________ ______________________________
Ralph Esposito Mark Dotterweich
USA CLCS Project Manager LMSMS&S CLCS Project Manager

Original Signed By: Original Signed By:
____________________________ ______________________________
Jeff Wheeler Henry Yu
CLCS User Liaison Dynacs CLCS Project Manager

84K00070
Rev. Basic

11/1/97 3

PREPARED BY: L. Wilhelm, DP-4

84K00070
Rev. Basic

11/1/97 4

REVISION HISTORY

REV DESCRIPTION DATE

84K00070
Rev. Basic

11/1/97 5

LIST OF EFFECTIVE PAGES

Dates of issue of change pages are:

Page No. A or D* Issue or Change No. CR No. Effective Date**

84K00070
Rev. Basic

11/1/97 6

1. Introduction ___ 10

1.1 Purpose __ 10

1.2 Referenced Documents__ 10

1.3 Acronyms and Definitions __ 10

2. Scope __ 10

2.1 Volume I: System Software __ 10

2.2 Volume II: Application Software _____________________________________ 11

3. Applicable Documentation _____________________________________ 11

3.1 Parent Documentation___ 11

3.2 Software Programming Standards ___________________________________ 11

3.3 Detailed Process Documents _______________________________________ 11

3.4 Software Configuration Management Document_________________________ 11

3.5 System Test Document __ 12

4. CLCS Project Overview__ 12

5. CLCS Organization ___ 13

5.1 System Engineering and Integration __________________________________ 14

5.2 Subsystem Engineering__ 14

5.3 System Software ___ 14

5.4 Applications Software ___ 14

5.5 Project Controls __ 15

5.6 Shuttle Data Center (SDC) ___ 15

6. Related CLCS Groups___ 15

6.1 System Design Team (SDT) __ 15

6.2 Hardware Architecture Team (HAT) __________________________________ 16

6.3 Engineering Review Panel (ERP) ____________________________________ 16

6.4 CLCS System Integration and Test (I&T) ______________________________ 16

6.5 CLCS Delivery Management __ 17

7. System and Software Documentation ____________________________ 17

7.1 System Level Specification (SLS) ____________________________________ 17

7.2 System Design Document (SDD) ____________________________________ 18

7.3 Software Requirements and Design Documents (SRDD)__________________ 18

7.4 Software Documentation Development Schedule ________________________ 19

8. Software Design Process (overview)_____________________________ 22

84K00070
Rev. Basic

11/1/97 7

9. Software Lifecycle Roles and Responsibilities ____________________ 23

10. Software Delivery Definition___________________________________ 24

10.1 Threads ___ 24

10.2 Thread Definition Activity__ 25

10.3 Delivered Products __ 25
10.3.1 Thread-Based Products _______________________________________ 25
10.3.2 Non-Thread-Based products____________________________________ 26
10.3.3 Pathfinders ___ 26

10.4 Delivery Definition Document ______________________________________ 27

11. CLCS Design Panel __ 27

11.1 Design Panel Process __ 27

11.2 Responsibility and Authority _______________________________________ 28

11.3 Thread Leads __ 28

11.4 Concept Design Panel__ 29

11.5 Requirements Design Panel _______________________________________ 30

11.6 Detailed Design Panel __ 31

12. Coding __ 32

12.1 Code Inspections and Walk-Throughs _______________________________ 32

12.2 Code Error Detection Tool___ 33

12.3 Software Development Folders _____________________________________ 33

12.4 Code Configuration Management (CM)_______________________________ 33

13. Software Testing __ 35

13.1 Unit Testing __ 35

13.2 Unit Integration Test (UIT)___ 35

13.3 CSCI Integration Test (CIT)__ 36

13.4 System Test__ 36

13.5 Regression Test __ 37

13.6 Software Issues ___ 37

13.7 Post-Production Support __ 37

14. Independent Verification and Validation Support _________________ 38

15. CLCS User Software Testing __________________________________ 38

15.1 User Software Validation __ 38

15.2 User Acceptance __ 38

16. Software Development Tools __________________________________ 39

16.1 Design Tool __ 39

84K00070
Rev. Basic

11/1/97 8

16.2 Drawing Tool ___ 39

16.3 Office Support Tool Suite ___ 39

16.4 Software Configuration Management ________________________________ 39

16.5 Tool Updates and Future Automation ________________________________ 39

17. Software Development Environments___________________________ 40

17.1 Software Development Environment (SDE) ___________________________ 40

17.2 Integrated Development Environment (IDE) ___________________________ 40

17.3 Development Set Locations__ 40

17.4 Development Environment Administration_____________________________ 40

18. Software Change Control _____________________________________ 40

19. Software Problem Reporting __________________________________ 41

20. Software Product Assurance __________________________________ 41

21. Software Security ___ 42

22. Software Risk Management ___________________________________ 42

22.1 System Software Re-use__ 43

23. Metrics __ 43

23.1 Metrics To Be Kept __ 43

84K00070
Rev. Basic

11/1/97 9

Appendicies:

Appendix A:

System Software Development Process

84K00070
Rev. Basic

11/1/97 10

1. Introduction

1.1 Purpose
This document defines the System Software development plan to be used on the
Checkout and Launch Control System (CLCS) project.

This document provides the guidelines for each CLCS software developer to accomplish
the design, code, test and delivery of CLCS system software.

1.2 Referenced Documents

• CLCS Design Panel Assessment Template Document, 84K00XX -TBD

• CLCS Design Panel Software Requirements and Design Template, Document
84K000XX-TBD

• CLCS Programming Standards Document, 84K07500-010

• CLCS Systems Engineering Management Plan, Document 84K00053

• CLCS System Design Document (SDD), Document 84K0021

• CLCS Configuration Management Plan, Document 84K00052

• CLCS System Test Plan, Document 84K00056

• CLCS Program Management Plan, Document 84K00050

• CLCS Project Plan, Document 84K00051

• CLCS Project Safety and Mission Assurance Plan, Document 84K00055

• CLCS Transition Plan, Document 84K000XX-TBD

• CLCS Certification Plan, Document 84K000XX-TBD

1.3 Acronyms and Definitions
The latest information on CLCS acronyms and definitions can be found on the CLCS
home Web page: http://lpsweb.ksc.nasa.gov/CLCS/

2. Scope

2.1 Volume I: System Software

Volume I of this document applies to all System Software to be delivered for the CLCS
project. It includes Gateway software development, User Applications software

84K00070
Rev. Basic

11/1/97 11

development, SDC interface software development, re-used software and COTS software
except where noted.

2.2 Volume II: Application Software

Volume II of this document applies to all Application Software to be delivered for the
CLCS project. It includes all test and checkout application software for LCC area sites
and remote sites such as CITE and HMF.

It is the goal of CLCS to employ a common development methodology for both System
Software and Applications Software to the extent practical.

3. Applicable Documentation

3.1 Parent Documentation
This plan is derived from the CLCS System Engineering Management Plan (SEMP),
which defines the overall system engineering process for the CLCS Project. Selected
information from the SEMP is included in this document to aid in understanding of how
the CLCS software development process fits into the overall system engineering process.

3.2 Software Programming Standards
The detailed software programming standards to be employed in CLCS are defined in the
CLCS Programming Standards Document (84K07500-010).

3.3 Detailed Process Documents

The detailed processes to be used for CLCS software development are listed below.
These processes will be made available to all CLCS developers and will be periodically
updated as required.

- Unit Test Process (84K000XX-TBD)
- System Test Process (84K000XX-TBD)
- Issue Resolution Process (84K000XX-TBD)
- Risk Management Process (84K000XX-TBD)
- Software Re-Use Process (84K000XX-TBD)
- Code Walk-Through/Inspection Process (84K000XX-TBD)

3.4 Software Configuration Management Document
Software configuration management details are contained in the CLCS Configuration
Management Plan, Document 84K00052.

84K00070
Rev. Basic

11/1/97 12

3.5 System Test Document
System Software testing details are contained in the CLCS System Test Plan, Document
84K00056.

4. CLCS Project Overview
The CLCS will replace the existing Launch Processing System (LPS) used at the
Kennedy Space Center (KSC). The LPS monitors and controls ground support and flight
equipment during the testing, pre-launch, launch and On-Orbit phases of the Space
Shuttle.

The CLCS is a five year project with ten planned software deliveries to incrementally
provide CLCS capabilities. The software deliveries are planned at six month intervals,
culminating in a fully operational CLCS system.

The overall CLCS project team is managed by NASA. Team member companies
include: NASA, INET, Lockheed-Martin Space Mission Systems and Services
(LMSMS&S), United Space Alliance (USA), Boeing, and EG&G. Each contractor
provides management of their contractor teams under the overall CLCS Project
management.

84K00070
Rev. Basic

11/1/97 13

Project
Management

System Engineering
and Integration

5. CLCS Organization

The CLCS Project will be managed according to the following abbreviated organizational
chart.

System SoftwareSubsystem
Engineering

Gateways & S/W

Applications
Software

Project Controls Shuttle Data
Center

Administration

84K00070
Rev. Basic

11/1/97 14

5.1 System Engineering and Integration
Provides direct support to the CLCS NASA Project Managers. The System Engineering
and Integration Division is responsible for the following:
• Project level strategic planning and coordination
• System level hardware, software, platform, and network architecture development
• System level requirements capture, reliability and maintainability analysis, safety

assurance, security engineering, and pre-production configuration management
• System level integration and test certification plans, and the coordination of

technology studies

5.2 Subsystem Engineering
Provides the design, procurement, implementation and delivery of all necessary CLCS
hardware, gateway software and network management services.

• Procures or develops CLCS hardware
• Procures or develops Gateway hardware and software
• Procures or develops Network hardware and software
• Provides Network management and security
• Procures or develops Console hardware

5.3 System Software
Provides the design and development of all CLCS software designated as “System
Software”.

• Defines the software development process
• Performs CSCI, CSC subsystem design
• Produces mid-level software design specifications
• Produces tested, configuration managed, documented and delivered System S/W

code.

5.4 Applications Software
.Provides the design and development of all User applications Software.

• Reengineering of all Goal applications
• Produces tested, configuration managed, documented, and delivered Applications Set

Code
• Provides a common repository of applications code

84K00070
Rev. Basic

11/1/97 15

5.5 Project Controls
Provides and facilitates the overall CLCS project planning, change control, analysis and
facility modification management.

• Management of the CLCS Change Control process
• Management of CLCS facility modifications
• Set activation
• Project Compliance and process definition
• CLCS planning, analysis and project performance measurement
• Administrative project support

5.6 Shuttle Data Center (SDC)
Provides the SDC hardware and software support to CLCS build, data bank, data
recording, Informational services and SDC operations.

• Provides CLCS system and TCID build Products and services
• Provides DBSAFE data base and support
• Provides data recording services
• Provides configuration management of all developed and delivered products
• Provides SDC operating systems, development environments and tools
• Provides CLCS BASIS, document viewing and data distribution

6. Related CLCS Groups
CLCS software design and delivered code is produced under the oversight of the
following groups under Systems Engineering and Integration. Each group operates under
chartered responsibilities depicted in the System Engineering and Management Plan
(84K00053). The group’s functions are summarized below:

6.1 System Design Team (SDT)

The System Design Team (SDT) is responsible for the complete CLCS system level
design architecture. System Design is the lead organization that coordinates and directs
the CLCS System Design Team. This design responsibility includes coordinating the
System Hardware Architecture, Software Architecture, Sub-system Design, Network
Design, and all external interfaces to CLCS.

The System Design Team is responsible for:

• CLCS System Level Specification (SLS)
• CLCS System Design Document (SDD)
• CLCS External Interface Descriptions (IDD)

84K00070
Rev. Basic

11/1/97 16

The System Design Team is also responsible for defining and documenting the overall
CLCS System Software, Applications Software and Gateway Software architectures. The
System Design Team works closely with CSCI leads, Systems Engineering and the CLCS
User Community to ensure a software architecture that meets approved requirements.

The SDT will provide (as part of the overall software architecture):

• CLCS Software Architecture Documentation
• Software Architecture Issue Resolution
• Coordination of Interfaces between CSCI’s

6.2 Hardware Architecture Team (HAT)

The Hardware Architecture Team (HAT) is responsible for defining and documenting the
overall CLCS System Hardware Architecture. The team also works closely with HWCI
and CSCI leads, Systems Engineering and the CLCS User community to ensure a
hardware architecture that meets approved requirements.

The HAT is responsible for:

• System-level hardware architecture definition
• System-level network architecture definition
• Hardware issue resolution.

6.3 Engineering Review Panel (ERP)

The Engineering Review Panel (ERP) is chaired by the System Engineering Division
Chief or designee.
The ERP resolves system design issues that are of major importance, such as safety
issues, significant system design issues, system performance, or those issues that
significantly involve both hardware and software.

The ERP is responsible for:

• System-Level issue resolution such as design, testing, performance or safety issues

6.4 CLCS System Integration and Test (I&T)

CLCS System Integration and Test (I&T) is responsible for the complete system level
integration of delivered products and testing of all delivered products to insure that all

84K00070
Rev. Basic

11/1/97 17

system level specifications and product level specifications have been met. In addition,
Integration and Test is responsible for providing direction and coordination of the system
level configuration management policies and procedures, and the system set build
policies and procedures.

 System Integration and Test is responsible for:

• CLCS System Test Plan
• CLCS Configuration Management Plan
• CLCS Delivery Specific Test Plan and Procedures

6.5 CLCS Delivery Management

CLCS Delivery Management is responsible for providing support, on a delivery based
focus, to the CLCS Project Managers. This support includes product development
schedule tracking, procurement schedule tracking, integration tracking, facility
modification schedule tracking, and final delivery verification and accountability.

The CLCS Delivery Management is responsible for:

• Scheduling and tracking of all deliverable hardware and software products
• Periodic status presentation of major delivery phases and milestones to CLCS

developers and project management
• Providing a forum for delivery issue resolution and issue tracking
• On-going delivery support such as phasing, dependencies and delivery issue

resolution

7. System and Software Documentation

7.1 System Level Specification (SLS)

The System Level Specification (SLS) contains the CLCS System Level requirements.
The System Level Specification is derived from the following sources:

• Existing Launch Processing System Requirements
• LPS user requirements inputs
• Shuttle Upgrade Project Requirements
• External to LPS System Interface requirements (i.e. Ground Measurement System,

HAZ GAS)
• KSC Resident CCMS, CDS, RPS, expertise

84K00070
Rev. Basic

11/1/97 18

The Checkout and Launch Control System is defined by a set of capabilities needed to
successfully launch a Space Shuttle (and later, future space vehicles) from KSC. These
capabilities include monitoring and controlling ground support and flight equipment
during the testing, pre launch and on-orbit phases of the Space Shuttle. These CLCS
System Capabilities are defined in the System Level Specification.

The System Level Specification is a living document. It is under configuration control
after the first project Architectural Baseline Review. Changes, corrections, and additions
to the SLS are under configuration control through the CLCS Change Control Board.

The CLCS project development is broken up into several software and hardware
deliveries. The requirements captured in the System Level Specification are allocated to
the appropriate CSCIs and HWCIs as part of the design process. The delivered CSCIs
are designed, tested, and accepted to the requirements stated in the SLS and to the lower-
level product requirements stated in the Software Requirements and Design Documents
(SRDD’s) .

The system level and lower-level requirements are incrementally met with each delivery.
CLCS software functionality will be delivered in a series of incremental deliveries over 5
years. Each delivery will add increasing CLCS capability in functioning segments, or
“threads”, or non-thread products. Each incremental delivery will be tested and delivered
to CLCS Users. Both Developers and Users will provide feedback on delivered software
quality and functionality.

The CLCS system capabilities to be developed for each incremental delivery are defined
in the Delivery Document.

SLS requirements correspond to IEEE-2167 Specification “Level-A” requirements.
SRDD requirements, described in the following paragraphs, correspond to the IEEE-
2167 “Level B” and “Level C” requirements.

7.2 System Design Document (SDD)

The CLCS System Design Document (SDD) (84K0510-XXX TBD) contains the
definition of the CLCS hardware and software architecture including an overview of each
software CSCI. The System Software Requirements and Design Document (SRDD)
continues from that point to provide a complete picture of the software design, both for
the development and for the sustaining phases of CLCS.

7.3 Software Requirements and Design Documents (SRDD)

84K00070
Rev. Basic

11/1/97 19

The Software Requirements and Design Documents (SRDD’s) are the primary software
product specifications that document the design of each delivered CSCI and CSC.

The SRDD’s are a collection of CSCI and CSC-Level design documents which contain
both the CSC software design, detailed design and the requirements that the CSC is
meeting. Each SRDD document structure must conform to a Template defined in the
CLCS Design Panel Software Requirements and Design Template, (document
84K000XX-TBD).

The Software Requirements and Design Document (SRDD):

• Is produced by the CLCS Software Developer
• Documents the CLCS software requirements, design and detailed design
• Is organized by CSCI and CSC
• Incorporates templates for consistency
• Is a living document, under periodic revision
• Is released as a new revision with each CLCS software release
• Adds increased depth with each Design Panel presentation
• Applies to all System, Gateway, CLCS-SDC and Applications Software
• Is numbered at the CSC and CSCI level
• Will be maintained for the life of CLCS
• Will be stored in a NASA/KSC document repository

The CSC SRDD documents are individually numbered. Each CSC SRDD document is
referenced by a top-Level CSCI document which is also numbered. Each SRDD
document (CSC or CSCI) contained in a CLCS software release will be revised, if
necessary, for that release and approved by the Design Panel process, be given an updated
revision number and released to the User.

The CSCI-level document provides an overview of each CSCI’s functionality. The CSCI
document references the CSC’s it contains. Each CSC document contains the actual code
design and mid-level requirements per the Design Panel Template.

7.4 Software Documentation Development Schedule

The following Matrix provides an overview of the required software documentation and
depicts when a specific document is required in the software development process.

84K00070
Rev. Basic

11/1/97 20

Software Documentation Development Schedule
 (Figure 1)

Document Name Description Date Due
Prelim

Updates Date Due
Final

Comments

CSCI Overview Specification Provides an overview of the CSCI
and a brief description of each
CSC within the CSCI. This
document is a forward for the
CSC Reqs & Design Spec.

Reqs Panel CIT Complete
+ 10 Days

N/A for Application S/W

CSC Development /
Implementation Schedule

A schedule of the implementation
tasks, dependencies, and
significant milestones planned for
providing the CSC in a delivery.

Reqs Panel Updated
Weekly

N/A Generated in MS
Project and reported to
Delivery Manager on
weekly basis.

CSC Requirements and Design
Specification

Contains the functional and
performance requirements and
the detailed design for the CSC
for the current and prior
deliveries.

Reqs Panel Detailed
Design
Panel

As-Built at
CIT + 15
Days

Apps S/W produces a
separate requirements
and design spec at the
CSCI level

CSC Interface Definition
Document (IDD)

Contains the requirements and
design for establishing an
interface with another CSC. The
IDD represents an interface
agreement that must be signed
by all parties involved in the I/F.

Reqs Panel
+ 10 Days

N/A Detailed
Design Panel
+ 10 Days

Done on a CSCI basis
for Apps S/W

CSC Application Program
Interface (API) Manual

Contains the description of any
programmatic interfaces provided
by the CSC. The description
includes usage, list of arguments,
return values, error codes, and
any special instructions.
Document formats follow UNIX
Man Page for on-line utilization.

Reqs Panel
+ 10 Days

N/A Detailed
Design Panel
+ 10 Days

N/A for Application S/W

CSC Test Plan Defines the test environment and
test cases to be executed to
verify the functional and
performance requirements for the
CSC.

Reqs Panel N/A Detailed
Design Panel
+ 10 Days

This is the CSCI SVP
for Application S/W
(see below).

84K00070
Rev. Basic

11/1/97 21

Software Documentation Development Schedule (continued)
 (Figure 1)

Document Name Description Date Due
Prelim

Updates Date Due
Final

Comments

CSC Test Procedures Defines the detailed procedures
to be executed for each test case
for the CSC. These procedures
include test setup, test tool
descriptions, procedure steps,
and expected results.

CIT- 15
Days

As
Required

CIT Start - 3
Days

Contained in the CSCI
SVP for Apps S/W.

CSC Test Report Documents the results of the
formal CIT for this CSC. This
report includes the "as run" test
procedures, test data
captured/analyzed, and a
description of any anomalies
(issues) written during the test.

N/A N/A CIT + 10
Days

Done on a CSCI basis
for Apps S/W

CSC User Guide Contains an overview of the
functionality provided by the CSC
and the detailed instructions on
how to operate or invoke the
various functions. Includes "As
built" displays, user interactions
required, and informational or
error message explanations.

Detailed
Design
 Panel

N/A CIT

CSC Operational Notes and
Installation Instructions

Defines any special operational
notes on installing, configuring or
executing the CSC that would not
be covered in the CSC User
Guide.

CIT - 15
Days

N/A CIT

Software Metrics Report Provides a report on the
development and test metrics for
each CSCI/CSC as required by
the CLCS Project Software
Development Plan.

Reqs
Panel

Monthly N/A This is done on an IPT
basis for Apps S/W.

 CSCI S/W Ver. Plan (SVP) Provides the plan for the users to
validate the application software
and the underlying system.

N/A for System
Software.

84K00070
Rev. Basic

11/1/97 22

8. Software Design Process (overview)

The software design process is contained within the system design process and is divided
into three distinct phases: Concept Design Panel, the Requirements Design Panel, and
the Detailed Design Panel. Each Panel phase concentrates on specific products and
activities in the delivery of both CLCS hardware and software.

The Software development process continues to occur after the third (final) Software
Design Panel. In this phase, final detailed software design, code inspection, code walk
through and integration tests are performed Products generated in the final phase are not
reviewed in the formal Design Panels.

Note: The Concept Design Panel, the Requirements Design Panel, and the Detailed
Design Panel are intended to incrementally provide the same level of review that the
classical Preliminary Design Review and the Critical Design Review would as outlined
in the outdated MIL-STD-2167. This method reduces user acceptance risk and provides
a method of early detection of design problems.

84K00070
Rev. Basic

11/1/97 23

9. Software Lifecycle Roles and Responsibilities

Delivery Process Roles and
Responsibilities

Delivery Capability
Definition

Product Development

Integration and System Test

Delivery Acceptance

Projec
t M

an
ag

em
en

t

an
d User

 Liais
on

Sys
tem

 Enginee
rin

g

an
d In

teg
rat

ion

Applic
ati

ons S
/W

Sys
tem

 S/W

Sub Sys
tem

 Eng.

Sim
ulat

ion

Pr
oj

ec
t M

an
ag

em
en

t

an
d

Use
r L

iai
so

n

Delivery Products
Definition

Sys
tem

 Engin
ee

rin
g

an
d In

teg
rat

ion

Delivery Process

Delivery ManagementR
es

po
ns

ib
le

 O
rg

an
iz

at
io

n
s

84K00070
Rev. Basic

11/1/97 24

10. Software Delivery Definition

A strategic system engineering analysis will be performed in advance of delivery start.
Each delivery is mapped out to meet specific and measurable project goals, providing
capabilities to the user community at the earliest possible time and constraining the
delivery to an achievable work content.

 The delivery definition phase begins with a written agreement between CLCS Project
Management and the User Liaison office which documents the specific capability of a
software delivery. This includes:

1. Capabilities Provided For Operational Support
2. Facility Considerations
3. Affected External Organizations

The Five Year Project Schedule and Project Effectivity and Milestone chart, as well as
the Strategic Engineering function discussed earlier will be used to facilitate this
definition agreement activity.

10.1 Threads
A thread is a specific system-wide capability defined and provided in a CLCS software
delivery. It is a major system wide capability that can be exercised by designer and user
as soon as it is delivered. It acts as a system test case during integration testing and
usually involves many CSCI’s and hardware platforms. It is defined, scheduled, tracked
and tested. A thread lead is assigned early in the development process to ensure adequate
design and oversight.

System Engineering and Integration use the concept of a system “thread” to capture a set
of capabilities for each delivery. Threads encompass a system wide view of all software
products (CSCI’s/CSC’s) and hardware products (HWCIs) that the system capability
relies on. The diagram on the following page illustrates the product and thread
relationship.

As the threads are defined for a specific delivery, they ‘impact’ CSCI’s, CSC’s and
HWCI’s. The intersection of the vertical lines (delivery threads) with the horizontal lines
(CSCI’s/CSC’s/HWCI’s) represent the assessment of the work required to provide the
capabilities of a delivery.

84K00070
Rev. Basic

11/1/97 25

Products, Threads, and Assessments

PRODUCT

PRODUCT

PRODUCT

PRODUCT

PRODUCT

• Requirements Design Panel
• Detailed Design Panel

• Requirements Design Panel
• Detailed Design Panel

• Requirements Design Panel
• Detailed Design Panel

• Requirements Design Panel
• Detailed Design Panel

Requirements Design Panel
Detailed Design Panel

T
H

R
E

A
D

T
H

R
E

A
D

T
H

R
E

A
D

T
H

R
E

A
D

 Current Delivery Threads

Thread Impacts
To CSCIs

Concept Design Panel
Assessments

CLCS
 CSCIs/CSCs

T
H

R
E

A
D

T
H

R
E

A
D

Follow On
Delivery Threads

10.2 Thread Definition Activity

Thread definition is the initial activity for a delivery. The thread definitions are made by
Systems Engineering and Integration. The thread definition includes participation from
the User Liaison throughout the process. This process captures the required capability
that the CLCS CSCI’s/CSC’s/HWCI’s must provide. The product of this definition phase
is the Delivery Definition Document.

10.3 Delivered Products

CLCS delivered products are organized in general categories:

1. Thread Based Products
2. Non-thread Based Products

10.3.1 Thread-Based Products

Thread-Based Products are software products to be delivered that have been developed in
accordance with allocated system level specifications to meet the intent of the thread

84K00070
Rev. Basic

11/1/97 26

defined capability. These products are described by the thread and are a configuration
managed deliverable in the form of a CSC or CSCI.

A thread is not a delivered product. A thread describes a set of capabilities of associated
CSCI’s/CSC’s/HWCI’s and provides a ‘system capability’.

10.3.2 Non-Thread-Based products

 Non-Thread-Based products are those items that include, but are not limited to, the
following:

1. Prototype Products, prototype software (e.g. Console Enclosures, COTS product
evaluation)

2. Trade Study outcomes
3. CSCI development that is in direct support of a capability that is described by a later

delivery thread
4. System software CSCIs such as operating systems, design tools, etc.

While these types of delivered products are not necessarily categorized by a thread, they
are included in the project work breakdown structure and are tracked and managed
accordingly.

10.3.3 Pathfinders

The purpose of a pathfinder is to produce, and usually demonstrate, the framework for a
future design solution where the exact design direction is not clear or agreed-upon.

When required, a pathfinder will be created during the delivery definition and tracked
with less formality than a thread. A pathfinder usually follows a shortened design
process, and may include only the first or second design panel. It can be employed for
either software or hardware designs.

In general, Pathfinders have the following characteristics:

- Lightweight in design process and schedule
- Prototype designs are produced and demonstrated
- User review is included in the design and in demonstrations
- Pathfinders use the Design Panel and Thread definition process (although
 abbreviated)
- Prototype (i.e. potentially through-away) code is produced
- Pathfinder code may be incorporated in a delivery but only after the
 requirements of this software development plan have been met.

84K00070
Rev. Basic

11/1/97 27

10.4 Delivery Definition Document

The CLCS Delivery Document describes all of the software threads and products that
make up a delivery, both software and hardware. It is produced by the CLCS design team
at the start of the delivery definition and evolves as the thread assessments solidify.

It is a living document until the successful completion of the Concept Design Panels. It
then becomes the official agreement between Project Management, the User Liaison,
System Engineering and Integration and the development organizations defining the work
that will be performed for an incremental delivery.

Once the delivery document has been released, the project delivery manager begins to
build the delivery schedule and track all delivered products.

11. CLCS Design Panel

CLCS Design Panel Process

Deliv
ery

Docu
ment

Delivery
Capability
Agreement

Thread
Kick-off

System
Engineering
Work Session

Thread Lead
and CSCI/HWCI
 Leads

Concept
Design
Panel

CSCI/HWCI
Developer
Work sessions

Requirements
Design
Panel

CSCI/HWCI
Developer
Work sessions

Detailed
Design
Panel

• Thread
 Concept
• CI Impacts
 Assessment
• Schedule

• Refined Concept
• Prelim. Product
 Specifications
• Prelim. Test
 Plans

•Refined Product
•Specifications
•Refined Data Flows
•Refined Specs

CLCS
Project
Management User

Community

11.1 Design Panel Process

The software development process is significantly linked to the CLCS Design Panel. All
newly developed, non-COTS software, except as noted in Volume II for User

84K00070
Rev. Basic

11/1/97 28

Applications software or pre-existing SDC software will be developed using the design
panel process.

The Design Panel is a coordination activity rather than a detailed design activity that
reviews the software design to the CSC level. Users are invited to every stage of the
Design Panel.

The panel considers SLS requirements, current LPS system functionality, User’s needs,
and proposed operational concepts. Software is reviewed against the total system
architecture. The review considers the total software life cycle including the sustaining
phase.

The Design Panel process can be shortened in real-time. Panels can be combined or
eliminated, depending on complexity or criticality at the discretion of the Panel
Chairman. Special topics, Pathfinders or concepts can also be presented as panel agenda
items.

11.2 Responsibility and Authority

The CLCS Design Panel reviews all hardware and software that is directly produced for
CLCS. The review occurs incrementally in the concept, requirements, and detailed
design phases. It occurs prior to testing and delivery of CLCS products.

The CLCS design panel process is the responsibility of the System Engineering and
Integration Division. The lead of the SE&I Division is by definition the Design Panel
Chairman. The Design Panel Chairman has designated Design Panel Co-Chairmen. In
addition, a Design Panel Secretary is designated.

The Design Panel Chairman has the responsibility to coordinate the internal design panel
meetings and provide/publish the agenda for the official design panels. The chairman has
the responsibility to conduct the design panels, direct any actions to be worked, and
insure that configuration control of the design panel products is provided.

The Design Panel Secretary is required to take notes during the official design panel
meetings and track any actions. The actions captured in a design panel will be recorded
and tracked in the Razor Issue data base. In addition, the Design Panel Secretary will
provide an archive (hard copy) of each design panel, along with an attendance list of the
panel participants.

11.3 Thread Leads

84K00070
Rev. Basic

11/1/97 29

The primary responsibility of a thread lead is to provide the system level engineering
expertise for the thread assessment phase of a CLCS delivery. The thread lead will
coordinate and capture CSCI and HWCI assessment impacts that will be documented
using the thread assessment template.

The thread lead is responsible for providing delivery dependencies to the Delivery
Manager using the CLCS Dependency Form. These dependencies will be incorporated
into the Delivery Manager’s Production Report.

The thread lead’s job continues after the Concept Design Panel. After the successful
completion of the thread assessment the thread lead will monitor and provide system
level design guidance for the development of the individual CSCIs and HWCIs that were
impacted by the capability provided by a particular thread. The thread lead will provide
system engineering expertise throughout the CSCI and HWCI development cycle when
an issue of requirements and/or capability requires resolution. In addition, the thread
lead will provide system level engineering expertise to the Integration and Test group
from the time that the assessment is complete.

11.4 Concept Design Panel

The Concept Design Panel is the first review that takes place for a CLCS delivery or
change to a previous delivery.

Concept panel data is presented by a member of the System Engineering and Integration
team (or designee). This presenter is considered the “Thread Lead” for a particular thread
for the next delivery. The purpose of the Concept Design Panel is to provide the concept
and an assessment of work required to meet all delivery capabilities.

Tasks to be completed prior to the Concept Panel:

1. Completion of the Thread Assessment Template including:
 - SLS Requirements mapping to threads
 - Draft of the development schedule
 - Description of tasks (e.g. working groups, ops. concept etc.)
 - Concept overview
 - Statement of work analysis and refinement
 - H/W and S/W diagrams
 - Labor assessment summary in labor months
 - Any delivery document updates or corrections
 - Dependencies
 - Items to be procured
 - Test and training requirements

84K00070
Rev. Basic

11/1/97 30

 - Issues
 - Design Risk Assessment

2. Coordination of interface requirements and functionality with affected CSCI and
HWCI leads

3. Creation of input for the Requirements Design Panel
4. Understanding of major concept of operations with the Users and CSCI leads

Data to be presented at the Concept Panel:

1. Completion of the Thread Assessment Template (reference 84K000XX TBD)
2. High Level System Overview of the Thread Capability
3. System Level Requirements satisfied by the delivery of the capability described by

the thread.
4. Assessments in labor-months to complete the work for the delivery

11.5 Requirements Design Panel

The purpose of the Requirements Design Panel is to provide a review of the CSCI/CSC
requirements and preliminary design. The material for the Requirements Design Panel is
presented by the software CSCI Lead (or designee).

Tasks to be completed prior to the Requirements Panel:

1. Completion of the Software Requirements Design Panel Template (Document
84K000XX-TBD) including:

- Groundrules
- Functional requirements (level B and C)
- Preliminary Design (overall software structure or class diagrams)

 - Performance requirements
- Interfaces, data Flow
- Test planning
- Issues

2. Coordinate interface requirements and overall functionality with the Thread Leads

Data to be presented at the Requirements Panel:

1. Present the completed Requirements Design Panel Template
2. Present CSCI Preliminary Design information

- First cut of class/object model or structure diagram
- Specific “use cases” or scenarios generated from requirements

84K00070
Rev. Basic

11/1/97 31

- First cut of process-level diagrams and process interaction diagrams

3. Provide input into the Detailed Design Panel Template

Post Requirements Panel:

- Resolve open issues

11.6 Detailed Design Panel

The purpose of the Detailed Design Panel is to provide a final review of the work to be
performed prior to code generation. The design is reviewed at the top-level for good
design practice. The panel ensures the design meets requirements and defined concept of
operations. The material is presented by a CSCI Lead or delegated presenter.

In some cases, coding may be authorized to start prior to completion of the Detailed
Design Panel. This authorization is by the Design Panel Chairman.

Tasks to be completed prior to the Detailed Design Panel:

1. Completion of the Detailed Design Panel Template (Document 84K000XX-TBD),
refinement of all Concept Panel data, and refinement of object models.

 (note: not all are items are required, depending on use of a Structured or Object
 Oriented design process)

- Requirements update (if any)
- Groundrule update (if any)
- Detailed Design Diagram
- External Interface Diagram
- Detailed Data Flow Diagram (structured)
- Object Class Diagram (OOD)
- State Diagrams (OOD)
- System Messages
- User or System Displays
- API definition
- Simulation Models
- Detailed dependencies
- Detailed Data interfaces
- Syntax Diagrams
- Input data and formats
- Recorded data
- Table formats

84K00070
Rev. Basic

11/1/97 32

- External Interface test plan
 - Documentation described in the Software Documentation Development

 Schedule (figure 1)
- Issues

Data to be presented at the Detailed Design Panel:

- The completed Detailed Design Panel Template

Post Requirements Panel:

- Resolve open issues

12. Coding

After completion of the Detailed Design Panel, software coding is completed per the
CLCS Programming Standards Document, 84K07500-010. Final documentation updates
are made per the Software Documentation Development Schedule (figure 1).

No further panel presentations are necessary and the developed code proceeds to Unit
Test then CSCI Integrated Testing (CIT) and System Test.. Developers support software
testing through software delivery completion. Post software delivery problem reports
(Razor issues) are tracked in the CM database.

12.1 Code Inspections and Walk-Throughs

The code inspection and walk-through process can be combined into a single process or
can be performed individually. Both must be performed on all custom software
developed for CLCS.

The purpose of code inspections is to ensure that the guidelines of the CLCS
Programming Standards Document have been followed. The purpose of the walk-
through is to provide an independent look to verify that program function, logic,
structure, data and methods meet good design practice and with minimum complexity.

It is the responsibility of the CSCI lead to perform and document both code inspections
and walk-through for each delivered CSCI. Code inspections do not have to be combined
with the walk-through and can be done on an informal basis by a peer or CSCI lead with
the results being recorded.

84K00070
Rev. Basic

11/1/97 33

Documentation recording the inspection/walk through reviewers, date and results will be
retained in the Razor CM tool. The name of the actual programmer is not required to be
retained. However, the CSCI/CSC name is required.

In general, code inspections will have the following characteristics:

- Notice of a review will be given three days in advance
- Two or three reviewers present, including from outside the current CSCI
- Reviewers will review for standards followed, technical content, good coding
 and design processes

12.2 Code Error Detection Tool

In addition to the testing processes stated in this document, it is planned that CLCS code
will be analyzed for errors by an automated method under the auspices of the IV&V
group. Current plans include utilizing the McCabe tool set to accomplish this task.

12.3 Software Development Folders

TBD

12.4 Code Configuration Management (CM)
Through the code development and test lifecycle the software code undergoes an
increasing level of configuration management as it is coded, tested, and released.
The Razor (COTS) configuration management data base contains the developed code in
all stages of production. Code is checked into Razor after initial coding and is
“promoted” to increasing levels of CM as it successfully passes each phase of testing.
The following flow describes the CM promotion process:

The Razor data base contains the developed code in all stages of production. Code is
checked in to Razor after initial coding and is “promoted” to increasing levels of CM as
it successfully passes each phase of testing. The following diagram describes the CM
promotion process:

84K00070
Rev. Basic

11/1/97 34

Develop and Test Code CM Razor Data Base Owner:

Check in Developer

Promote (upon successful test)

Developer

Promote (upon successful test)

System Test

Promote (upon successful test)

User

Software CM Promotion Process

CIT Test

CIT
Baseline
(Razor Data

Base)

Ops
Baseline
(Razor Data

Base)

Code

Unit Test

System Test

Ops User Test

Development
Baseline
(Razor Data

Base)

System Test
Baseline
(Razor Data

Base)

84K00070
Rev. Basic

11/1/97 35

13. Software Testing

Software testing consists of Unit Tests performed by the CSC developer, Unit Integration
Testing, performed by the CSC developer; CSCI Integration Tests (CIT) performed by the
CSC developer in conjunction with a Quality representative and the Systems Test group;
and System Test performed by the Systems Test group in conjunction with a Quality
representative.

13.1 Unit Testing

Unit Testing is the responsibility of the software developer. Unit testing is performed on
software components to check functionality and performance in a standalone mode or in a
debug environment. Unit Testing is to debug the software to minimize functional and
integration errors.

Quality Assurance monitoring is not required. However, problems encountered during
Unit Testing are recorded in the Razor data base and tracked, awaiting closure by the
CSC developer and verification of closure by the CSCI lead. Closure is normally
accomplished by additional unit testing unless the CSCI lead verifies, with the
concurrence of Systems Test and Integration and NASA Quality that the problem can
adequately be closed by other methods such as analysis or inspection.

• Unit Tests will be developed to perform functional testing by the CSC developer
• Test cases will check both normal and error conditions for each input parameter
• Unit Test cases will be maintained in the Configuration Management Repository for

future regression testing
• For each code change, the associated Unit Test case will be modified as necessary and

then performed
• Test results will be maintained in the Common CM Repository to provide for

comparisons of follow-on tests
• All newly developed software, regardless of criticality, will undergo Unit Testing

13.2 Unit Integration Test (UIT)

Unit Integration Test (UIT) is performed by the software developer to verify basic
functionality and successful integration of a set of programs (CSC’s). The UIT is tested
against Functional Requirements and can be the first level of testing for reuse software.
UIT’s are witnessed and signed-off by the CSCI lead and QA. The number of tests and
test cases for UIT’s are finalized at the Detailed Design Panel. UIT’s are performed in
the development environment.

84K00070
Rev. Basic

11/1/97 36

Once Unit testing is successfully complete, code is promoted in Razor to the UIT
baseline. The code is not yet under formal control and can be modified by the CSC
developer. on.

13.3 CSCI Integration Test (CIT)

CSCI Integration Testing (CIT) is a test performed on software to test functionality and
performance in an integrated environment against other software components within a
hardware testbed. The purpose of CSCI Integration Testing is to ensure that the software
has no known functional and performance problems prior to entering the formal System
Test.

The CIT environment approximates the actual real-time operational environment as
closely as possible. A representative suite of application software may be loaded as well
as any other interfacing software. Either development tested software or simulation
software may be used. Integrated testing may be also be performed against a hardware
test bed (e.g. Sail, KATS). Integrated testing is the responsibility of the software
developer. User participation is encouraged on a non-interference basis.

After successful completion of the CIT the software is placed under formal CM control.

Formal CM control includes:

- NASA-Quality verification of fixes
- Formal closure of Razor issues
- Code must pass the previous test before it can be checked into the current
 test baseline

13.4 System Test

The system level testing is completed against the System Requirements (SLS) and Design
Documents (SRDD’s). System Level Testing of a software delivery is organized by
threads.

After successful CSCI integration testing dry-runs by the CSC developer, CM releases the
CSCIs to the Systems Test group and the code is promoted to the System Test Baseline in
Razor. Any fixes or new code is required to pass the previous test (or selected special
testing) prior to checking in to the System Test Baseline. All code continues under formal
control.

84K00070
Rev. Basic

11/1/97 37

The System Test group verifies System Level Requirements, a representative set of mid-
level or detailed system requirements and that external interfaces meet specifications.
System functionality, performance, and system-wide data flow are tested.

After successful completion of Systems Test, software is released to CLCS users, who
perform User-level Validation and Certification tests.

13.5 Regression Test

Representative subsets of functional and performance tests will be retained under CM
control in the CM Repository for regression testing. The subset will be exercised with
each release of CLCS software to the User, as a minimum and other selected times to
prove functionality or performance trends.

Results of the regression tests will be recorded and retained for the life of the CLCS
project in the CM repository. Results will be summarized and reviewed with CLCS
project management, Systems Engineering and System Software on a release-by-release
basis.

13.6 Software Issues

Software issues (software problem reports) can be opened by the developer anywhere in
the development cycle and retained in the CM repository under Razor.

It is a requirement, however, that any issues that occur after CIT completion be recorded
in the CM Repository. After CIT, issues are required to be closed in a formal manner (i.e.
QA witness, re-run of the preceding test).

13.7 Post-Production Support

Software Developers provide post-production support for delivered products. Typically,
post-production support includes:

 - Systems integration support
 Reviewing and commenting on documents
 Helping write and refine procedures

 - System testing assistance
 Review and comment on system test Plan
 Review and comment on system test Procedures
 Support Dry Run system test

 - Problem resolution
 - User testing support

84K00070
Rev. Basic

11/1/97 38

 Exact support is on an “as requested” basis

14. Independent Verification and Validation Support

CLCS Software will be independently evaluated by NASA and contractor representatives
from the NASA IV&V facility at Fairmont, West Virginia. The CLCS project entered
into formal agreement with the IV&V facility in June of 1997 to accomplish this task.

The CLCS project will be reviewed, including CLCS software, subsystems,
documentation, and processes. Critical areas of software will be identified and evaluated
using a Criticality and Risk Assessment (CARA) analysis.

The IV&V effort will provide an additional level of assurance as well as reduce systems
engineering , integration, and operational use risks.

IV&V personnel report independently to the IV&V Facility NASA management and to
the CLCS Project Manager. System Software personnel provide day-to-day IV&V
assistance and information.

15. CLCS User Software Testing

15.1 User Software Validation
Software Validation is the formal process performed on software to test functionality and
performance in an integrated environment against simulation software and in a
configuration controlled hardware CLCS set. This post-CLCS development activity is
performed on software released to the CLCS user. It is not to be confused with
independent IV&V performed by the NASA IV&V facility at Fairmont, WV.

Validation may be performed against a hardware test and is the responsibility of system
knowledgeable personnel with assistance from software production as required. Quality
is required to support validation for changes to any critical components.

15.2 User Acceptance

User Acceptance is a systematic approach by which the user community gains the
experience and builds confidence in the developed CLCS software. User Acceptance
culminates in the use of software for vehicle processing. In the development phases of
CLCS, user acceptance criteria will be identified by both the IPT and by external sources.
External sources include senior shuttle technical representatives who will formally
identify user acceptance requirements to the CLCS project.

84K00070
Rev. Basic

11/1/97 39

16. Software Development Tools

16.1 Design Tool

Paradigm Plus has been chosen as the object-oriented design tool. This tool will be made
available to each developer. Design tool environment files will be checked into Software
Configuration Management along with the code, so that the programmer’s desktops are
also preserved.

The Rumbaugh method has been chosen as the Object Oriented design methodology and
is supported by Paradigm Plus.

In cases where Paradigm Plus does not meet specific structured design requirements,
other tools may be employed on a limited basis with the approval of System Engineering
and System Software.

16.2 Drawing Tool

Visiotech has been selected as the CLCS drawing tool standard for CLCS drawings.
Visiotech will be available to each CLCS team member. In cases where the drawing tool
does not meet specific drawing requirements, other tools may be employed on a limited
basis with the approval of System Engineering.

16.3 Office Support Tool Suite
Microsoft Office Tools (Word, Project, Excel, Exchange) are the standard project
administrative and documentation tools. Each programmer will have these tools
available. All CLCS project documents are to be generated using these tools.

16.4 Software Configuration Management
Razor, a project-wide (KSC, JSC, SDC) software configuration management tool will be
used for managing all software development files, including development environment
files. RAZOR will be available to all software development personnel. Complete
information on the use of RAZOR is available via the CLCS Web home page.

16.5 Tool Updates and Future Automation
New Software development tools, or modifications to existing tools, are continuously
being evaluated for use in CLCS. Tool changes will be extremely selective and must
demonstrate a clear labor, cost or safety benefit before being incorporated in CLCS. This
plan will be updated as new tool or tool capability changes occur.

Automation candidate topics currently being considered are:

84K00070
Rev. Basic

11/1/97 40

• Requirements trace from the SLS to the SRDD
• Requirements trace to Thread Definition
• Tool assistance in documenting and putting on-line the CLCS software Architecture
• Creation of a CLCS Interface Document
• Use of Doc ++ to assist in documenting developed code

17. Software Development Environments

Several software development environments will exist to develop CLCS software. All
share the same development. The standards and requirements set forth in this document
apply to all custom developed software regardless of the development environment used.

17.1 Software Development Environment (SDE)

The Software Development Environment (SDE) hardware sets are used by programmers
for developing and testing CLCS software. This environment includes all the hardware,
tools, and software necessary to create, develop, test, manage, and document code. The
primary CLCS Software Development Environments are located at KSC and at
Lockheed-Martin Space Missions Systems and Services in Clear Lake, Texas.

17.2 Integrated Development Environment (IDE)

The Integrated Development Environment (IDE) is an operational environment subset,
replicating the operational sets in configuration and performance, but not in total quantity
of equipment. The IDE will be used to test Application Software in a verified operational
configuration.

17.3 Development Set Locations
The IDE is located in the Launch Control Complex (2R23, 24 and 25). SDE’s 1 and 2 are
located in the PCC room 3015. Lockheed-Martin operated systems are in contractor
facilities in Houston (1322 Space Park Drive, Houston, TX 77058).

17.4 Development Environment Administration
The IDE and SDE configurations are controlled by the Integration Control Board (ICB) as
well Lab Manager(s). Access to each site is controlled. Server backups are performed
periodically. New accounts and account changes are performed by the CLCS System
Administrators.

18. Software Change Control

84K00070
Rev. Basic

11/1/97 41

New requirements to be incorporated into a baselined release (i.e. released to user) are
controlled by the CLCS Change Control Board as are changes to baselined schedules.

Changes resulting from Software problems that do not reflect a new requirement are
under the scope of this plan.

The policies and procedures that make up the change control process for CLCS software
are discussed in detail in the CLCS Control Board Charter (84K00006) and the CLCS
Configuration Management Plan (84K00027).

The process includes:

• Configuration Identification - selecting those items that will be placed under
configuration control and when they will be controlled

• Change Control including the following products and procedures
• CLCS Development Tools
• CLCS Master Document Library
• CLCS Software Library
• Released/Delivered Software
• Change Requests
• Engineering Support Requests
• Requirements changes and additions
• Test Plans

19. Software Problem Reporting

Software Problem reports or Razor “issues” are tracked as defined in the Software
Configuration Management Process.

The Web-based, COTS tool “Razor” implements this process. Detailed instructions are
depicted on the Razor Web CM page: http://www-de.ksc.nasa.gov/clcs/cm/

20. Software Product Assurance

The Software Product Assurance Program is to assure the quality of all software and its
documentation.

CLCS incorporates full time NASA, USA, LMSMS&S and other S&MA personnel to
ensure quality of the delivered software product. Their duties include:

84K00070
Rev. Basic

11/1/97 42

• Review and sign-off at the CIT test phase and beyond for all subsequent
software tests

• Monitoring and sign-off of the CIT Test Procedures
• Monitoring and sign-off of the System Test Procedure

21. Software Security

All System Engineering and Development Organizations will identify security-critical
CSCI’s or CSC’s whose failure could lead to a breach of NASA security.

CLCS System Engineering and Integration will develop a security plan to assure that the
requirements, design, implementation, and operating procedures for the identified
software minimize or eliminate the potential for breaches of system security. The
developer of this design and implementation will record the security requirements in the
software development plan, implement the strategy, and produce tested evidence, as part
of required software products, that all security requirements have been carried out.

22. Software Risk Management

Risk Management of the CLCS process begins during the delivery definition phases.

The CLCS goal of risk management, via user community involvement, is accomplished
through the User Liaison representative(s) to drive the project development process. The
User Liaison, in conjunction with CLCS Project Management and System Engineering,
will drive and negotiate the delivery content.

This level of communication and direction enable the project management and the project
development teams to remain close and candid throughout this phase of the project. The
use of the incremental reviews as part of the design panel process allows project
management, through the design panel chairman, to monitor and manage project risk.

The Concept Design Panel provides the overview that indicates whether the desired
delivery capability is too ambitious for a single delivery. This allows the CLCS project
management to coordinate resources to provide those capabilities that not only must be
completed as part of the incremental building block approach of the CLCS delivery
process but also to provide the capabilities that the user community desires to have as
soon as possible in the project.

The Requirements Design Panel and the Detailed Design Panel provide the CLCS project
managers, through the design panel chairman, to monitor and manage/mitigate high level
system level architecture issues. This insight to the product development cycle allows a

84K00070
Rev. Basic

11/1/97 43

great deal of risk mitigation as it is performed in ‘real time’, as the incremental capability
is provided and the incremental system level requirements are met.

22.1 System Software Re-use

During the course of the project, the software developers will identify opportunities for
obtaining software products for reuse and will evaluate the benefits and costs of these
opportunities. Opportunities that provide cost benefits and are compatible with program
objectives will be identified.

System software and applications developed as part of the Mission Control Center
(MCC) project at the Johnson Space Center will be ported and re-used in the CLCS
architecture where appropriate.

The developer will identify, evaluate, and retain, in the CM Data Base, reusable software
products for use in fulfilling the requirements of the CSCI.

Representatives from the System design team determine the software reuse candidates.

23. Metrics

23.1 Metrics To Be Kept
Software Metrics and history data will be kept and maintained for the project by Systems
Software, using data obtained from the Software Configuration Management Tool and
provided by the CSCI Lead. These metrics include:

METRIC Globally, by CSCI, and by CSC
Size:

Source lines of code (SLOC) √
Quality:

Errors per KSLOC1 √
Errors found prior to CIT, (Informal Razor
Issues)
Includes:

√

 Requirement Errors √
 Design Errors √
 Unit Test Errors √

1 KSLOC is 1,000 lines of source code. Source code lines are counted including
comment lines, control lines, and any other complied or assembled commands.

84K00070
Rev. Basic

11/1/97 44

Errors found during CIT √
Errors found during System Test √
Post Delivery Errors √

Productivity:
KSLOC per software developer staff month √

Description of work performed √

Degree of complexity of work (real-time versus routine report generation) and type of
work (code change v. writing new code) must also be taken into account.

84K00070
Rev. Basic

11/1/97 45

Appendix A

System Software Development Process

84K00070
Rev. Basic

11/1/97 46

START

GENERATE
DELIVERY SOW

FORM THREAD 1
OF N DEFINITION

TEAMS

CAPTURE
CAPABILITIES
THAT DEFINE
THE THREAD

IDENTIFY
IMPACTED
CSCIs/CSCs

PRESENT TO
SYSTEM

ENGINEERING

CONCUR?

THREAD IS NOW
DEFINED WITH SOW

ITEMS
DOCUMENTED

DEFINE THREAD
BASED

CSCIs/CSCs
PRODUCTS &

IMPACTS

DEFINE
NON-THREAD

BASED
PRODUCTS

REWORK ISSUES
IDENTIFIED

NO

YES

(Strategic Eng. Team)

(Strategic Eng. Team)

(Strategic Eng. Team)

(Strategic Eng. Team)
(Strategic Eng. Team)

,

Decision: Sys. Engr. Lead

1

SLS
Conops
Schedule

CLCS System Software
Development Overview

Revision 1.1
10/7/97

Thread Lead

84K00070
Rev. Basic

11/1/97 47

1

UPDATE
DELIVERY

DEFINITION
DOCUMENT

THREAD LEAD PREPARES FOR
CONCEPT PANEL:

 Completes Thread Assessment Template:
 - Requirements Analysis
 - Draft Schedule
 - Task Description
 - Concept Overview
 - SOW Items Refined
 - H/W -S/W Diagrams
 - Labor Assessment
 - Dependencies
 - Procurement Items
 - Test, Training Requirements
 - Issues Stated

THREAD LEAD PRESENTS TO CONCEPT
PANEL:

 - Completed Thread Assessment Template
 - Overview of Thread Capability
 - SLS Requirements Satisfied
 - Labor Assessment
 - Delivery Document Milestones

APPROVED

YES

CONCEPT PANEL PREPARATION

2

CONCEPT PANEL PRESENTATION

(THREAD LEAD)

(SYSTEM DESIGN TEAM)

(SET)

NO

DECISION: DESIGN PANEL CHAIRMEN

Fast Path?
Fast
Path
Start

Decision: Design Panel Chairmen

84K00070
Rev. Basic

11/1/97 48

2

CSCI LEAD PREPARES FOR
REQUIREMENTS
PANEL :

 Completes Requirements
 Panel Template:

 - Ground rules
 - Requirements (B & C)
 - Performance Reqmts.
 - Interfaces
 - Data Flow
 - Test Planning
 - Issues
 - Select OOD vs. Structured
 - Ops scenario
 - Dependencies
 - Detailed Dependency
 Schedule

APPROVED
?

REWORK ISSUES
IDENTIFIED IN

REQUIREMENTS
PANEL

 YES

3

 REQUIREMENTS PANEL

 CSCI LEAD DOCUMENTS AND
 PRESENTS :

 - Completed Requirements
 Panel Template
 - CSCI Preliminary Design
 Information
 - Input to the Detailed design
 Template

FOR OBJECT ORIENTED
COMPLETE:

 - Object Oriented Diagrams:
 Class
 Model
 Inheritance

REQUIREMENTS PANEL PREPARATION

REQUIREMENTS PANEL PRESENTATION

NO

CSC LEAD

CSC LEAD

CSC LEAD

DESIGN PANEL CHAIRMAN

84K00070
Rev. Basic

11/1/97 49

3

CSC LEAD PREPARES FOR
DETAILED DESIGN PANEL:

 Completes Detailed Design
 Template:

 - Detail. Design Diagram
 - Ext. I/F Diagram
 - Data Flow Diagram
 - Obj. Class Diagram
 - State Diagrams
 - Systen Messages
 - User & System Displays
 - API Definition
 - Simulation Models
 - Dependencies
 - Syntax Diagrams
 - Data Formats, Structures
 - Test Plan
 - Documentation

 DETAILED DESIGN PANEL

CSC Lead Documents and
Presents:

 - Completed Design Panel
 Template (all items
 above)

APPROVED
?

REWORK ISSUES
IDENTIFIED IN

DETAILED
DESIGN PANEL

4

NO

YES

DETAILED DESIGN PANEL PREPARATION

DESIGN PANEL PRESENTATION

(CSC LEAD)

(CSC LEAD)

Decision: Design Panel Chairmen

CONDUCT DESIGN
WORKING GROUPS (CSC/CSCI LEAD)

(CSC LEAD)

84K00070
Rev. Basic

11/1/97 50

 DEVELOP UNIT TEST CASES

 - FUNCTIONAL TESTING
 - ERROR AND NORMAL
 CONDITIONS
 - FOR EACH INPUT
 PARAMETER

4

WRITE CODE

PERFORM CODE
WALK

THROUGHS
AND

INSPECTIONS

RE-WORK
ISSUES

IDENTIFIED IN
WALK THROUGH

5

RAZOR ISSUES
DATA-BASE

(CSCI LEAD)

REFINEMENT
REQUIRED? YES

NO

DEVELOPMENTAL
DATA BASE

RAZOR CM
REPOSITORY

CHECK IN CODE TO RAZOR

SUBMIT ISSUES TO RAZORDECISION: CSCI LEAD

 PERFORM
 UNIT
 TEST

- FUNCTIONAL
TESTING

- ERROR AND
NORMAL
CONDITIONS

- FOR EACH
INPUT
PARAMETER

5A

 REFINE
 TEST CASE?

REWORK
NO

DEVELOPMENTAL
DATA-BASE
RAZOR CM

UNIT TEST
BUILD

SOURCE
 CODE

ENVIRONMENT
 VARIABLES

CSC DEVELOPER

CSC DEVELOPER

CSC DEVELOPER

(CSCI LEAD)

CSC DEVELOPER

RAZOR CM
REPOSITORY

SDC BUILD
GROUP

8

(FAST PATH)

84K00070
Rev. Basic

11/1/97 51

CM REPOSITORY

(RAZOR CM
DATA BASE)

5

(CSC DEVELOPER)
OBTAIN UNIT

TEST RESULTS

PASS
UNIT TEST?

REWORK ISSUES
IDENTIFIED IN

TEST

6

PASS
TRIAL
CIT?NO

DOCUMENT
TEST RESULTS

STORE TEST RESULTS

YESNO

5A

PERFORM
TRIAL
CSCI

INTEGRATION
TEST
(CIT)

DEVELOPMENTAL
DATA BASE

(RAZOR CM DATA
BASE)

PERFORM
SYSTEM BUILD

PERFORM TCID
BUILD

DEVELOP
CIT TEST
CASES

YES

PERFORM UNIT
INTEGRATION

TEST

6A

AND ISSUES

TEST CASE
OK
?

REWORK
TEST CASE

YES

NO

(CSC DEVELOPER)

(CSC DEVELOPER)

(CSC DEVELOPER)

SDC BUILD
GROUP

(CSC DEVELOPER)

TEST OK
 ?

REWORK

YES

NO
Quality,
I&T
CSC DEV.

Quality,
I&T
CSC DEV.

84K00070
Rev. Basic

11/1/97 52

PERFORM
FORMAL

CSCI
INTEGRATION

TEST
(CIT)

DEVELOPMENTAL
DATA BASE

(RAZOR CM DATA
BASE)

PERFORM
SYSTEM BUILD

PERFORM TCID
BUILD

YES

OBTAIN TEST
RESULTS

INTEGRATION
DATA BASE

(RAZOR CM
REPOSITORY)

PASS
CIT?

7

PERFORM
FORMAL
SYSTEM

TEST

SYSTEM TEST
DATA BASE

(RAZOR CM DATA
BASE)

PERFORM
SYSTEM BUILD

PERFORM TCID
BUILD

YES

6
6A

NO

7A

CONVERT
RAZOR
ISSUES

TO FORMAL

STORE TEST RESULTS &
ISSUES

QUALITY REP.

CSCI LEAD

CSCI LEAD

CSCI LEAD

SYSTEMS TEST

SDC BUILD
GROUP

SDC BUILD
GROUP

PROMOTE CIT
DATA BASE TO
INTEGRATION

DATA BASE

QUALITY
CONCUR?

NOYES

84K00070
Rev. Basic

11/1/97 53

NO

YES

RELEASE DATA
BASE

(RAZOR CM DATA
BASE)

PASS
SYSTEM
TEST?

CM REPOSITORY

PERFORM USER
VALIDATION AND

ACCEPTANCE
TESTING

RELEASE DATA
BASE

(RAZOR CM DATA
BASE)

REUSE EXISTING
TCID OR

PERFORM NEW
TCID BUILD

YES
PROMOTE SYSTEM TEST DATA BASE
TO RELEASE DATA BASE

77A

STORE TEST RESULTS
& ISSUES

84K00070
Rev. Basic

11/1/97 54

REVIEW
REQUIREMENTS
WITH THE USER

DEFINE
 CONCEPTS

PROTOTYPE

DEMONSTRATION

UPDATE DESIGN
DOCUMENTS

CODE & TEST

CHANGES
?

PASS ?

REWORK
ISSUES

REWORK
ISSUES

YES

NO

Fast Path
Development Overview

FAST
PATH
START

 8

YES

NO

CSC DEVELOPER

CSCI LEAD

CSC DEVELOPER

CSC DEVELOPER

CSC DEVELOPER

CSC DEVELOPER

CSC DEVELOPER

CSC DEVELOPER

CSC DEVELOPER

